DATE: MAY 14, 2018

It is expected that all students have extensive previous mathematical experiences and that they are familiar with the following topics before they enter the IB Diploma Programme.
Therefore the following table lists the topics covered by the entrance exam in Mathematics.

	- Vieta's formulas - Quadratic inequalities Exponentials - Exponential function - Exponential equations - Exponential inequalities Logarithms - Laws of logarithms - Logarithmic function - Logarithmic equations - Logarithmic inequalities
Coordinate geometry	Students are expected to know how to find: - Distance between two points - Mid-point of line segment - Slope/Gradient of a line - Equation of a line (parallel and pependicular lines) - Perpendicular bisector - Distance from a point to a line
Trigonometry	Students are expected to be familiar with: - Trigonometric ratios - Trigonometric identities - Unit circle and radian measure

Examples of questions for the entrance exam:

1. Find the equation of a line (in gradient - intercept form $y=k x+n$) which is parallel to a line with equation $x-3 y+4=0$ and passes through the point $\mathrm{A}(1,5)$. Hence, graph the line and determine its sign, and increase/decrease.
2. Find the equation of the quadratic in the form $y=a x^{2}+b x+c$ with graph given below:

3. Solve exponential inequality: $2^{x+1}+7 \cdot 2^{-x}>9$
4. Solve logarithmic equation: $\log _{x} 10+2 \log _{10 x} 10+3 \log _{100 x} 10=0$
5. Find the exact value of $\sin \theta, \tan \theta$ and $\cot \theta$ if $\cos \theta=-\frac{3}{4}$ and $\frac{\pi}{2}<\theta<\pi$.
6. Simplify: $\left(\frac{1}{b-\sqrt{a}}+\frac{1}{b+\sqrt{a}}\right): \frac{a^{-2} \cdot b^{-1} \cdot-2 \sqrt{\frac{1}{9}}}{a^{-2}-a^{-1} \cdot b^{-2}}$.
7. Evaluate: $5 \tan 540^{\circ}+2 \cos \left(-1170^{\circ}\right)-\sin \left(-900^{\circ}\right)-3 \cos 810^{\circ}$.
8. In the equation $x^{2}-2 m x+2=0$ determine the value of parameter m so that the roots of equation satisfy $\left(3 x_{1}-1\right)\left(3 x_{2}-1\right)=10$.
9. Which point on the x-axis is equidistant from points $\mathrm{A}(7,-4), \mathrm{B}(1,-2)$.
10. Solve the inequality: $2 x^{2}+x-45<0$.
11. Solve simultaneous equations: $\left\{\begin{array}{l}x+5 y+2=0 \\ 5 x y+8=0\end{array}\right.$
12. Find the inverse function of $f(x)=\log _{2}(x-1)+1$ and explain how to verify your answer.
13. Suppose $f: x \mapsto x^{2}$ and $g: x \mapsto 2-x$. Find the value(s) of x such that $(g \circ f)(x)=f(x)$
14. Calculate: $\left(\frac{1}{3}\right)^{\log _{\sqrt{3}} 5-\log _{9} 25}$.
15. Solve the inequality: $2^{\log _{8}(x-1)}>x-1$.
